Skip to content

Trim

Added in v0.7.0

Trim leading and trailing silence from an audio signal using librosa.effects.trim. It considers threshold (in Decibels) below reference defined in parameter top_db as silence.

Input-output example

In this example we remove silence from the start and end, using the default top_db parameter value

Input-output waveforms and spectrograms

Input sound Transformed sound

Usage example

from audiomentations import Trim

transform = Trim(
    top_db=30.0,
    p=1.0
)

augmented_sound = transform(my_waveform_ndarray, sample_rate=16000)

Trim API

top_db: float • unit: Decibel
Default: 30.0. The threshold value (in Decibels) below which to consider silence and trim.
p: float • range: [0.0, 1.0]
Default: 0.5. The probability of applying this transform.

Source code

audiomentations/augmentations/trim.py